
BPF Indirect Calls

LSF/MM/BPF 2025

Anton Protopopov

(now part of Cisco)

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk


Indirect calls in BPF

● Actually supported in LLVM since forever (2017), see a thread

● Require some changes from the kernel/libbpf side

https://lore.kernel.org/bpf/20191019200939.kiwuaj7c4bg25vqs@ast-mbp/


Indirect calls in BPF: toy selftest



Indirect calls in BPF: objdump -D



Indirect calls in BPF: libbpf

● In bpf_object__relocate() libbpf does:



Indirect calls in BPF: bpftool p d x



Indirect calls in BPF: bpftool p d x



Indirect calls in BPF: bpftool p d x opcodes



Indirect calls in BPF: bpftool p d x opcodes
LDIMM64 BPF_PSEUDO_FUNC

so, after the load
 R2->type = PTR_TO_FUNC;
 R2->subprogno = subprogno;



Indirect calls in BPF: bpftool p d x opcodes
The offset is relative. This load 
points to sub-function 1, the next 
one to sub-function 2



indirect calls: a more realistic example



indirect calls: a more realistic example



How to verify indirect calls

● Given that LDIMM64, src=PSEUDO_FUNC creates proper 

pointer, the only change required was*

* the actual change, of course, is a bit bigger, and the piece of the patch above is edited to fit on the screen



What’s next



What’s next



What’s next

libbpf: relocation against STT_SECTION in non-exec section is not supported!



What’s next



What’s next

Problem: on load from stack (or 
.bss, if foo declared globally), the 
register aux information is lost: 
which subfunction to verify?



What’s next



What’s next



What’s next

Libbpf creates a map, and populates with [indexes] of sub-functions



What’s next

Libbpf creates a map, and populates with [indexes] of sub-functions

This flag tells kernel that this type of 
INSN_SET map contains only pointers 
to functions, and lookups should be 
dereferenced to addresses of functions



What’s next



What’s next

Here foo is known to be a PTR_TO_FUNC 
and reg(foo)->aux keeps a ref to 
foo_table. Therefore, the verifier can 
validate all possible calls.



Indirect calls: questions

● Is this even ok to rely on LDIMM64[PSEUDO_FUNC]? Are there 

any potential problems with it? “Pseudo” part of the name 

looks suspicious. (Originally, it was added in 69c087ba62 (“bpf: 

Add bpf_for_each_map_elem() helper”.)

● Why does LDIMM64[PSEUDO_FUNC] only allow static 

functions (not global)?

● Need more use cases, are there real use cases?

https://github.com/torvalds/linux/commit/69c087ba6225b574afb6e505b72cb75242a3d844
https://github.com/torvalds/linux/commit/69c087ba6225b574afb6e505b72cb75242a3d844


Thanks!

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk

